Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Cheng Wang,* Xiang-Shan
 Wang, Zhao-Sen Zeng and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail:
xswang1974@yahoo.com

Key indicators

Single-crystal X-ray study
$T=289 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.071$
$w R$ factor $=0.242$
Data-to-parameter ratio $=12.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diethyl 2,8-diamino-4,10-bis(3-nitro-phenyl)naphtho[1,2-b;6,5- b^{\prime}]dipyran-3,9dicarboxylate dimethylformamide disolvate

The title compound, $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{10} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, was synthesized by the reaction of ethyl 2-cyano-3-(3-nitrophenyl)-1-acrylate and 1,5-naphthalenediol in the presence of $\mathrm{KF}-\mathrm{Al}_{2} \mathrm{O}_{3}$ in refluxing ethanol. The structure is centrosymmetric and the fused pyran ring adopts a boat conformation.

Comment

2-Aminochromenes are an important class of compounds found as the main components of many naturally occurring products employed as cosmetics and pigments and utilized as potential biodegradable agrochemicals (Morinaka \& Takahashi, 1977; Witte et al., 1986; Hafez et al., 1987). The utility of fluoride salts as potential bases in a variety of synthetic reactions has been recognized in recent years. In particular, potassium fluoride coated with alumina (KF-alumina) has been a versatile base developed by Ando et al. (1982) for alkylation. Over the years, this reagent has found application in a large number of organic reactions (Clark, 1980). This background prompted us to synthesize compounds catalyzed by this solid-supported reagent. Here, we report the X-ray crystal structure analysis of the title compound, (I).

(I)

The structure of (I) is centrosymmetric. Each pyran ring is slightly distorted and adopts a boat conformation (Fig. 1). Atoms C3 and O1 deviate from the basal plane defined by atoms C1/C2/C4/C5 by 0.191 (2) \AA and 0.084 (2) \AA, respectively. A similar distortion was observed in methyl 2-amino-4-(4-methylphenyl)-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quino-line-3-carboxylate dimethylformamide solvate (Wang et al., 2004) and 9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)-3,3,7-trimethyl-1,2,3,4-hexahydro-7H-xanthene (Li et al., 2004). The basal plane of the pyran ring is nearly perpendicular to the C12-C17 benzene ring, forming a dihedral angle of $88.3(2)^{\circ}$, and nearly parallel to the naphthalene ring system, forming a dihedral angle of 4.1 (2) ${ }^{\circ}$.

An intramolecular $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3$ hydrogen bond (Table 2) is formed between the amino and carbonyl groups (Fig. 2).

Received 26 May 2005 Accepted 31 May 2005 Online 10 June 2005

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry operator $(-x, 1-y, 1-z)$.

The amino group also forms an $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 6$ hydrogen bond with the solvent dimethylformamide solvent molecule.

Experimental

Compound (I) was prepared by the reaction of ethyl 2-cyano-3-(3-nitrophenyl)-1-acrylate ($0.98 \mathrm{~g}, 4 \mathrm{mmol}$) and 1,5 -naphthalenediol $(0.32 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of $\mathrm{KF}-\mathrm{Al}_{2} \mathrm{O}_{3}(0.25 \mathrm{~g})$ in EtOH $(15 \mathrm{ml})$ at 363 K for 8 h (yield 84%, m.p. $559-561 \mathrm{~K}$). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution. Elemental analysis, calculated: C 60.14, H 5.30 , N 10.52%; found: C 60.25 , H 5.45 , N $10.43 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, δ, p.p.m.): $1.09\left(t, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.74(s, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right), 2.90\left(s, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.01\left(q, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.29(s, 2 \mathrm{H}$, 2 CH), 7.46-7.58 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}$), 7.64-7.74 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 7.85 ($s, 4 \mathrm{H}$, $2 \mathrm{NH}_{2}$), 7.95 ($s, 2 \mathrm{H}, 2 \mathrm{CHO}$), 7.97-8.04 ($m, 4 \mathrm{H}, \mathrm{ArH}$), 8.08-8.14 (m, $2 \mathrm{H}, \mathrm{ArH})$; IR $\left(\nu, \mathrm{cm}^{-1}\right): 3435,3302\left(\mathrm{NH}_{2}\right), 3032(\mathrm{Ar}-\mathrm{H}), 2953(\mathrm{C}-$ H), $1687(\mathrm{C}=\mathrm{O}), 1609,1525,1495$ (phenyl ring).

Crystal data

\[

\]

Data collection

[^1]

Figure 2
A molecular packing diagram for (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Refinement

Refinement on F^{2}
H atoms treated by a mixture of
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.242$
independent and constrained refinement
$S=1.02$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.16 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.42 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 1$	$1.360(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.518(4)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.379(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.518(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.332(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.357(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.359(4)$	$\mathrm{C} 6-\mathrm{C} 6^{\mathrm{i}}$	$1.417(5)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5$	$119.3(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$110.4(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$122.5(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.7(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$123.1(2)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$9.4(4)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$15.8(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.1(4)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$-6.3(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-13.9(4)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$-7.2(4)$

Symmetry code: (i) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3$	$0.86(1)$	$2.11(3)$	$2.713(3)$	$127(3)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 6$	$0.86(1)$	$2.02(1)$	$2.866(5)$	$170(4)$

Atoms $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$ were refined isotropically, with the $\mathrm{N}-\mathrm{H}$ bond lengths restrained to $0.86 \AA$. All other H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine
structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of the Education Committee of Jiangsu Province for financial support (grant No. 04KJB150139).

References

Ando, T., Yamawaki, J., Kawate, T., Sumi, S. \& Hanafusa, T. (1982). Bull. Chem. Soc. Jpn, 55, 2504-2507.

Clark, J. H. (1980). Chem. Rev. 80, 429-452.
Hafez, E. A., Elnagdi, M. H., Elagamey, A. A. \& El-Taweel, F. A. (1987). Heterocycles, 26, 903-907.
Li, Y. L., Wang, X. S., Shi, D. Q., Tu, S. J. \& Zhang, Y. (2004). Acta Cryst. E60, o1439-o1441.
Morinaka, Y. \& Takahashi, K. (1977). Jpn. Patent JP 52017498.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, X. S., Zeng, Z. S., Shi, D. Q., Wei, X. Y. \& Zong, Z. M. (2004). Acta Cryst. E60, o1606-o1608.
Witte, E. C., Neuert, P. \& Roesch, A. (1986). Ger. Offen. DE 3427985.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[^1]: Siemens P4 diffractometer ω scans
 Absorption correction: none 5054 measured reflections 3340 independent reflections 2241 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

